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The following work has been accomplished under the grants AFOSR-80-0245,

80-0245A, 80-0245B, 80~0245C and 80-0245D.

A). SHOCK AND WEAR PROCESSES.

A device is subject to shocks causing damage. Let, Xt denote the
cumulative damage the device suffers during the interval (0,t] plus the
initial damage at time 0. It is clear that this will be a right continuous
and increasing stochastic process. Every jump of this process has the inter-
pretation of being the damage due to a shock at the time of the jump. Assume
that Xt is a nonstationary Levy process. The Poisson random measure
generating the Lévy process and describing the shock times and their damage

magnitude has a mean measure v{(dt,dz) of the form A(dt)u(dZ)ijf (zAl)u(dz) <,
R

0
This process is assumed to be defined on some probability space (Q,F,P). fThe

device has a certain threshold Y defined on another probability space
(2,F,P). The device fails when the damage first exceeds the threshold. The
failure time ¢ defined on O x Q° according to the following:

;(w,w')==inf{t§>0:xt(w)EEY(w’)}. Let E(y) be the probability that
threshold Y exceeds or equal to y, v20. Then for t=>0 and x>0 the
survival probability F%(t) is given by ?x(t)= EX[E(XE)].

Then, the following holds:

i) if G has increasing failure rate and A is convex and << leb.
with density f that is a P6lya frequency function of order two. then f;(t) o
has increasing failure rate for each x20; o
~ _ e o
ii) 4if G has a decreasing failure rate and A is concave, then Fx
.............. —
has a decreasing failure rate for each x20;
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iii) if G has increasing failure rate average and A is starshaped;

then Fx has increasing failure rate average for each x20;

iv) if G has decreasing failure rate average and A 1is antistarshaped

H<< leb. with PF

2 density, then -fx has decreasing failure rate average

for each x20;
v) if G 1is better than used and A is superadditive, then for each

xe (0,1) and x,t,s=0; we have

Fx(t+s)<Fax(t)F (s)

(1 -a)x

In particular _I-:O is new better than used.

vi) if G is new worse than used and A is subadditive, then TF.X is

new worse than used.
Moeover, when G depends both on the accumulated damage and time then
the following holds:
i) if the map x+G(x,t) has increasing failure rate average for each
t 20, the map t >G(x,t) is decreasing for each x20, and A 1is starshaped,

then F\{ has increasing failure rate average for each x=0;

ii} if the map x->5(x,t) has decreasing failure rate average, the map
t->6(x,t) is increasing for each x20, A is antistarshaped and u << leb.

with PF, density, then fo(t) has decreasing failure rate average for each

iii) if the map (x,t) >G(x,t) satisfied E(x+y,t+s)<6(x,t)a(y,s)

for each x,y,t,s20, A 1is superadditive, then for each x,t,s20 and

aec (0,1) we have

Fx(c +s) <me(t)}"(1 _a)x(s).
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In particular FO is new better than used.

iv) if the map (x,t)>G(x,t) satisfies the property
G(x+vy,t+s)>G(x,t)G(y,s) for each x,y,t,s>0 and A is subadditive,

then -P:x is new worse than used for each x20.

B). OPTIMAL MAINTENANCE AND REPLACEMENT POLICIES.

Suppose that a device is subject to shocks causing damage. Damage
accumulates and the accumulated damage can be described as a Lévy process with
man measure v{dt,dz) of the form dtu(dz). This simply means that the
process has stationary independent increments. Assume that the device can be
replaced before or at failure. Replacements at failure costs ¢ dollars. If
the device is replaced before failure a smaller cost is incurred. The cost
depends on the accumulated damage at the time of replacement, and is denoted
bv c(.). Let Xt denote the accumulated damage till time t. For any
Markovian replacement policy T, the average cost per unit time, wT is of
the form:

dJT(X)={EX[C(XT)I( ]+ch(‘r>i;)}/Ex('r), for each x=20. Let

T<7g)

cl(x)=c—c(x), x203c(+>)=0 and note that

IPT(X) ={c- EX[CI(XT)]}/EX(T)'

I . * , , s
A Markovian replacement time T, 1s called optimal if wT:(x) = inf wt(x)

where the infimum in the right hand side is taken over all Markovian replacement

times.
Let G cl(x) denote the infinitisemal generator of the function

cl(x),b(x) = inf xpT(x) and assume that b>0. Then under the assumptions of
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the finiteness of the average life time of the device and suitably chosen
conditions on the cost functions, we find that the optimal Markovian replace-

ment policy is a control policy of the form

* :

TS 1nf{t>0:Xte[xx, @ )AzZ,
where

a = inf{y:b(x) +Gc1(x+y) <0}.

The results reported on in B and C above have appeared in the paper
"Life distributions of devices subject to a Lévy wear process', in

Mathematics of Operations Research.

C). POSITIVE DEPENDENCE OF COMPONENTS.

The area of monotone dependence of multivariate distributions has
attracted the attention of many authors over the past decade. In this research
we investigate covariance inequalities for a class of multivariate strongly
unimodal densities, i.e., the class of logarithmically concave densities.
Strong unimodal densities play an important role in probability as well as in
Statistics since they enjoy the monotone likelihood ratio property.

For n=1,2,..., let

Hn= {f:Rn—>R+:f is strongly unimodal and symmetric}
An= {A:A is nxn diagonal matrix with diagonal elements #1}
Gn= {fe Hn:f(>_cA) = f(x) for all xe R® and all Ac An},

\ n
Ln= {K:K is a convex symmetric subset of R }.

We show that for a certain class of unimodal vectors the random variables




(R )R

N ",'-,.'

f(X) and g(X) are positively correlated for all f and g in Hn. it
follows in particular that if {X(t),t>0} 1is a Wiener process, then for
each t2>0, and each f,g in Hn the random variables f(_)g(t)) and
g(X(t)) are positively correlated. We also obtain bounds on the right tail
probabilities of random vectors whose densities belong to classes containing
the above ones.

Details may be found in "'Generating Positively Correlated Random

Variables from a Sequence of Independent Random Variables with Symmetric

Logarithmically Concave Densities', UNCC-Technical Report (1984)

D). LIFE DISTRIBUTION PROPERTIES OF DEVICES SUBJECT TO A PURE JUMP DAMAGE

PROCESS.

Suppose that a device is subject to damage, the amount of damage it
suffers, over time, is assumed to be an increasing pure jump process. We
denote such a process by X= (Xt,tZO).

¢inlar and Jacob (1981) showed that there exists a Poisson random
measure on R+x R+ whose mean measure at the point (s,z) 1is dsdz/z2 and

a deterministic function ¢ defined on the positive quadrant that is in-

creasin~ in the second argument such that

E f(X ,X )= f N(ds,dz)f(X +c(X_ ,f))
s <t s-'''s s~ s-
[0,t]xR+
almost everywhere for each function f on R+ X R+ with f(x,x)=0 for all
X in R+. In particular, it follows that

X =X_+ f N(ds,dz)c(:\’s_,z).
[O,tij+

The above formula has the following interpretation

&z&z&z&a&m&:&&m&m&z&&:ﬁz&:ﬁ:&&m&&:ﬂ



t-+Xt(w) jumps at s if the Poisson random measure N(w,.) has an
atom (s,z) and then the jump is from the left-hand limit Xs_(w) to the

right-hand limit

X =X 4+ c(X ,z).
s s- s-

The function c(x,z) represents the damage due to a shock of magnitude =z

occuring at a time when the previous cumulative damage is equal to x.

G

Assume that the device has a threshold Y and it fails once the damage exceeds

or equal to Y. The failure time is therefore given by

P

T = inf{t:Xt>Y}.
Let G be the right tail probability of the random variable Y. Then the

8 survival function is given by, for t=0,
. S(t) =P(S2t)
= E[G(X,)]
i\ We show that life distribution properties of G are inherited as

corresponding properties of S. The following are samples of some of the

results obtained:

-

(1) Theorem. Suppose that the function ¢ above satisfies the following

A

condition

c(.,z):R+~>R is increasing for each z20.

+

e

Then

> e e

i) S has increasing failure rate when G has increasing failure
rate and X has a totally positive density of order two;

ii) 5 has increasing failure rate on the average when G has an

increasing failure rate on the average and X has a totally positive density

3
P
¥

CTYR ALY Y P £ N Ma0Y, O IO O 0 R . % PR TR TS L WY ACAKRLRRS
‘ A S A A = 8% BT Ll 4 L% e o
AN QRSP ENIAIIN e Y

3 ull%“'t Y - Ak



e~
R

.
. w

—
2
NPl

-

LA 4
ORI

of order two;

iil) § 1is new better than used if G is new better than used.

(2) Theorem. Suppose that the function c¢ satisfies the following condition

c(.,z):R++R+ is decreasing for each z20.

Then

i) S has decreasing failure rate when G has decreasing failure rate
and X has a totally positive density of order two.

ii) S has a decreasing failure rate average when G has a decreasing
failure rate average and X has a totally positive density of order two.

iii) S is new worse than used when G is new worse than used and the

function x-+x+c(x,z) 1is an increasing function for each z=>0.

(3) Theorem.

i

i) Suppose that G(.,t) has increasing failure rate average for each
t 20, the mapping G(x,.) 1is a decreasing function for each x20, X has
a totally positive density of order two, and c¢(.,z) 1is an increasing
function for each 2z2>0. Then S has increasing failure rate average.

ii) Suppose that G(.,t) has a decreasing failure rate average for
each t>0, the mapping G(x,.) is an increasing function for each x=0,
X has a totally positive density of order two and c¢(.,z) 1is a decreasing
function for each 2z20. Then S has a decreasing failure rate average.

2

iii) Suppese that V= -1nG 1is a superadditive function on R+ and

c(.,z) 1is an increasing function for each z20. Then S 1is new better

than used.
2
iv) Suppeose that V above is a subadditive function on R+ while the

Ceda Loy et (W7 A0 Xk i BN RSN OO ¥ SN L * 47 AT A 1t
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function x-=+x+c(x,z) 1is decreasing for each z2>0. Then S is new worse

than used.

¢ We also discuss the optimal replacement problem for such devices.

K Define, for t=0,

PR
T

The nrocess Z==(Zt) is obtained by killing the process X at the failure
time of the device.

A device subject to the damage process Z can be replaced before or
at failure. Each replacement at failure costs ¢ dollars, c¢>0. The cost

of a replacement before failure depends on the damage level at the time of

: replacement and is denoted bv c(.). That is to say, c(x) 1is the cost of a
I\

Y i

Rt replacement when the damage level at time of replacement is equal to x.

. Naturally, we assume that c¢(x) 1is increasing and bounded above by c. Let
i

3 <Ht) be the canonical history of Z. Moreover, U denotes the class of

1\ . . .

K stopping times that do not exceed the life time <.

For any stopping time 1t in U we let & denote the expected cost of

{ replacement per unit time. We are interested in finding the stopping time
i

.

y T in U satisfying

‘ inf

s Eox = ET

; T TelU

4

k' That is to say, we want to find the stopping time in U that minimizes the
k)

expected cost per unit time over U. We call such stopping time the optimal

" |

replacement time. We give conditions on the cost function c¢(x) and the

damage function c(x,z) that guarantee that the optimal replacement policy

is a control-limit policy.

"W
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:§ The above results have appeared in the paper entitled "Life distribution

properties of devices subject to pure jump damage process', Journal of

éﬁ ) Applied Probabilitv.

‘d“

b0

4"( E). A POWER TRANSFORMATION EXPONENTIAL REGRESSION MODEL FOR CENSORED FAILUR:

A

. TIME DATA.

;“6‘ -

S

;:‘e Suppose that we have n items which are subject to failure. Let

"' X b *

}':g Tl’ Trayenes Tn be the random variables representing the failure time of the

v first. second, ..., n th item respectively. We assume that right censoring
\

f‘ may occur because of the need for early termination of the experiment and

o

i

“:* let 'T,_L, Ths vees Tn represent the recorded survival times. Defining

g ] <

censoring indicator variables

.

;i *

’ 1 if Ti is uncensored

) w, =

a i . * o

Koy 0 if Ti is censored

o we have

K * * .

! T.=T, if w,=1 and T.>T. if w,=0

! i i i i i q

.,':..

We let H
n n

ho n = Z w, and n Z (1-w.)

W uo, i c . i

‘ i=1 i=1

e

,_:. denote the numbers of uncensored and censored observations respectively.

N,

.- Without loss of generality we label the individuals such that the first n,

':t:“

%,o items have uncensored times to failure and the rémaining n have censored

Y times to failure.

We now suppose that measurements are available on k explanatory

.» %X, ), the

Now wwey X . Setting x =(xl, 9 I

variahles Xl’ N

probability densitv function and survival function of T siven X are

*

N .
. %
bS




denoted by f(t;x) and S(t;x) respectively. If the failure rate does not
*
depend on t, for any given x, T has the exponential distribution with

probability density function

u—lexp(-t/u ), t>0
F(t;x) = 3‘- &

0 otherwise.

Various models have been proposed in the literature to represent the

dependence of u_ on x. Fiegel and Zelew (1965)

-

Consider the model from

b= (1+x'g)

while Greenberg et al (1974) use the form

u = A/(1+x'8)

where _§'= (Bl,""Bk) and X is a positive constant. Both models require
that the condition x'B>-1 must be imposed to insure that ux>'0. An
alternative model which does not require a constraint to be imgésed on §f§
is

H = A exp(x'B)

This model arises for the exponential case from the well-known family of

propcertional hazard regression models (see e.g. Kay (1977)) in which an

assumed underlving hazard function is adjusted by multiplicative exponentail

facters to allow for the effect of the explanatory variables, Prentice (1973),

also discusses the use of censored regression models for the exponential case.
In this paper, we consider the power transformation model given by

/68

= oyl
b =A(1+8 x'B)

e
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We refer to & as the power parameter. It is seen that when é6=1, the

model corresponds to the model used by Fiegel and Zelew, while if d&§=-1 the
model proposed by Greenberg et al is obtained after appropriate remnarameterisa-
tion. When &-+0 the exponential model for My given above is obtained.

In general, the power parameter ¢ as weiI as the coefficient vector B8
will have to be estimated from the data. We obtain maximum likelihood
estimators for these parameters and it is shown how the estimates can be
obtained using the statistical package G LIM. We also discuss the assessment
of the goodness of fit of the model and numberical examples are given to
illustrate the procedure.

Details may be found in "A Power Transformation Regression Model for

Censored Failure Time Data', UNCC - Technical report (1984).

F). CONSERVATIVE AND DISSIPATIVE PARTS OF NON-MEASURE PRESERVING WEIGHTED

COMPOSITION OPERATORS.

FEarlier joint work with A. Lambert and T. Hoover on measure preserving
weighted composition operators is extended. The main result of this paper
implies that, if <t:X+X 1is a measurable transformation of a probability
space X onto X which is measure isomorphic to a measure preserving
transformation w:X-+X then there exists a weight function ¢:X- (0, )

such that the operator [T £1(x) = $(x)f o T(x) 1is conservative. Using this

st
result, it is possible to extend many results which were previously known only
for measure preserving weighted composition operators to the class of weighted
composition operators whose composition part is isomorphic to a measure

preserving transformation. 1In particular, the recent characterization of the

point spectrum for measure preserving weighted composition operators due to

A. Lambert, has a complete analogue for this wider class. These results have

3
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appeared in the paper '"Conservative and dissipative parts of nonmeasure
preserving weighted composition operators', Houston J. Math, 8, 575 - 586,

(1982).

G). STABILITY OF OPTIMAL STOPPING TIMES FOR MARKOV CHAINS AND THEIR

APPLICATIONS TO OPTIMAL REPLACEMENTS.

With respect to this discussion, a Markov Chain is a discrete time,

homogeneous, nonterminating Markov Process with values in a state space
(E,E). Two Markov chains X1= (Q,x_,F ,Pl) and X2= (R,x_.F ,Pz) are said
n n x n''n’ x

to be (e,Fm)-close if, for each x¢E and GeFm,

(t - (‘H’:{((}) < pi(c) <(1+ e)Pl(G) and (1- E)Pi(c) < P}l{(G) S+ e)l’i(c)

where me {0,1,2,...,=} and ¢ is in [0,1). If G is a class of bounded,
real valued reward functions and M 1is a class of Markov times, then X is
said to be (Fm,G,M) - stable (c(Fm,G,M) - stable) if for each aq>0 and
geG, there exists an ¢>0 and a 80>0 such that, if X1= (Q,xn,Fn,P}l{)
or g infln/g(x ) >s' (x ) - )

= inf{n/fz(xn)Zs(xn) -8} is an (o,s)-optimal stooping time for X((a,sl)-

is (t,Fm)—close to X, then for any 0>B8<8B
(1g
optimal stopping time for X1 here, s and s1 are payoffs). Weaker
forms of stability result if the conclusion holds only for B in some interval
bounded away from 0. In the paper, M 1is either MF, the class of first
entry Markov times, or it is, for some n>0, M(n), the class of stopping
times bounded by n.

If m= or M=M(n), it is shown that all Markov chains are stable
in a very strong sense. If m<w, then the (Fm,G,MF) types of stability are

equivalent to corresponding (Fl,G,MF) types.

Examples are given of chains which are (FI,G,MF)-stable and c(Fl,G,MF)—

stable. An example is given of a chain that is weakly (Fl.C,MF)-stable and




weakly c(Fl,G,MF)~stab1e but is not c(Fl,G,MF)—stable. Finally, an example
is given of a chain and a reward function g such that the chain is not stable
in anv (Fl,{g},MF) sense. The most useful theorem states that, if the g is
a reward function.and the MF-payoff associated with g is constant on the
orbits of X, then X 1is weakly (Fl,{g}MF)-stable and weakly c(Fl,{g},MF)-
stable.

Details are available in "On the stability of optimal stopning times for

Markov Chains, UNCC-Technical Report (1981).

H). STABILITY OF OPTIMAL STOPPING TIME AND OPTIMAL REPLACEMENT PROBLEMS.

The investigations are restricted to stability for Markov processes whi:ch
are either standard processes in the sense of Bluementhal and Gretoor or are

Markov chains. For optimal stopping times, two broad classes of stability

are considered. A problem (X,g) 1is considered to be ''c-stable", here X

is a process and g 1is a reward function defined on the state space of X,

if a close to optimal solution to the problem (X,g) 1is close to optimal for
any problem (Xl,gl) which is sufficiently ''close" to the problem (X,g). The
other broad class of stability considered views (X,g) as 'stable" if a

clost to ontimal solution to the problem (Xl,gl) is close to opntimal for

(X,g) provided (Xl,gl) is "close enough'" to (X,g).

-
One group of results characterizes stability of optimal stonping times in

terms of a corresponding but simpler property for the excessive majorants

associated with the problems by the theory. For example the following
paraphrases the characterization for c-stability. Here and below, if X' is a

nrocess and g, a reward function, then T, will denote the the smallest

1gi

. . . i
excessive majorant of 84 with respect to X'.
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We prove the following:

Let X be a process and let g be EA-measurable, bounded, lower Co-
continuous and, if X does not have finite lifetime, nonnegative and zero
at A. Then (X,g) is c-stable if and only if, for each xekFE and €>0,
ﬂlng(x)iéﬂg(x)+-e whenever X1 is close enough to X. A similar result
holds for stability except that one only gets sufficiency and several technical
assumptions have to be added. Still, these results represent a considerable
reduction of the problem since quite a lot is known about the structure of
excessive functions. Also, they can be used directly to show that the one
and two dimensional Wiener processes are stable as are the one and two
dimensional svmmetric random walks. They can also be used to show stability
of the classical nonsymmetric random walks on the integers (although, here,
somewhat stronger forms of stability are obtainable).

Another class of results concerns stability in the setting of finite
lifetimes. The metric used reflects the closeness of the lifetimes and very
strong results are obtained. Essentially in this setting one always has
both kinds of stability for optimal stopping times. These results are shown
to imrlv the stability of the optimal replacement problem in the event that
the expected values of the lifetimes are also finite. Since such an assumption
is reasonable, this constitutes a very satisfactory result,.

This work is contained in '"Stability of optimal stopping times for Markov

processes', UNCC - Technical Report (1982).

I). AN TITERATIVE SCHEME FOR APPROXIMATING OPTIMAL REPLACEMENT POLICIES.

let X==Xt, t20 be an arbitrary stochastic process with augmented state
A
space E~ and lifetime A= inf{t[Xt==A}. We analyze the following iterative

technique. Let b1 = Eog(XA)/EO(A). Consider the problem of maximizing the

KBGO G ) ; 1 R
T A A o o N T




- -
g,

-

-~ -

L

-

3

criterion w(bl,‘r) =b1E0('r) -Eog(x‘r) for T<A. 1If we are interested in a
generalized e-optimal policy, then tolerances x>0 and B>0 are
determined in terms of X,g,X and € so that, if a B-optimal nolicy Tl
for w(bl,r) gives w(bl,r)<c1 then X is already e-optimal, otherwise
take b2==E0g(XT1)/EO(Tl) and repeat the steps on the criterion
w(b2,1)==b2Eo(T)-Eog(XT). Under very reasonable assumptions on g (it must
be positive and bounded away from zero), it is shown that this iterative method
will supply a generalized e-optimal replacement policy. We.further implement
this scheme on a computer for certain Markovian damage models. Tn doing so, the
discrete approximations which are required are fully justified and some feeling
for the speed of convergence of the procedure is obtained. The iterative scheme
itself is very fast. Solving the related optimal stopping problems using
dynamic programming techniques is, however, very slow.

These results appeared in "An Iterative Scheme for Approximating Optimal

Replacement Policies', Reliability Theory and Models, M.S. Abdel-Hameed,

E. Ginlar and J. Quinn, Editors, Academic Press, New York, (1984).

J). ACCELERATED LIFE TESTING OF SYSTEMS WHOSE WEAR IS GOVERNED BY A CONTROLLED

ODE.

A device is composed of a material with defects, perhaps received in
manufacture. Let x denote the size of a given defect. Ther is a threshold
value B for x such that the device fails when x=B. The device is used
in an environment with m-states ;¥=(sl,sz....,sm). For fixed state vector

v, we assume that defect size grows with time according to an ODE of the form

(N dx/dt = h(x,v) >0




We also assume the existence of a sigma-finite measure n on (0,B] such that

n(d,B) is strictly increasing in d,
n(d,B) <» for all d>0, and
if AC(0,B] then inside a unit quanity of the

device material we have P(k defects belonging to A)=

@@ -n).
]

if Si is the ith environmental state then

(a) A N fatigue test consists of subjecting
the device to a fixed s stress level until
it fails., Time to failure is recorded.

(b) A s; dynamic test consists of subjection of
the device to stress si(t)==ct for a constant

c. Stress at failure is recorded.

Let Fi(t) and Di(s) denote the distribution functions for the fatigue and

dynamic tests, respectively. The ODE(l) is termed sy functionally seperable

if

h(x,;)==H(x,;i)g(xi(t)) where

Vi=(Sl""'si—I’Si+1""’sm)'
Theorem: The following are equivalent
(a) (1) 1is 5 functionally separable.
(b) Fl(t)=‘F2(t) for different stress levels

s, and s, and a constant c(sl,sz).

(c) Fl(t)==F2(q(t)t) for different stress levels

. 5, and s, and a function q determined by

s1 and 92'
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Provided that the ODE (1) is functionally separable, it turns out that the
constant ¢ can be determined statistically from dynamic test data.
Details may be found in "Accelerated Life Testing of Systems Whose Wear

is Governed by a Controlled ODE", UNCC - Technical Report (1986).

K). OPTIMAL STOPPING AND REPLACEMENT FOR WEAR MODELS INCORPORATING CONTINUOUS

WEAR.
Tet Xt,t>0 be a Markov process with a finite state space
.,xn}. While X is in state X the wear increases by jumps
according to a Lévy process with Lévy measure \)(xi,dy) and continuously at
a rate g(xi). Thus, if L(xi)u denotes the value at time u of the xith
Lévy process and X 1is in state Xy for s<u<t then the wear accumulated
over this time interval is given by

t

g(xu)du+L(x )(t s)

S

Everv change of state from X, to xj is accompanied by a jump in damage
determined by adding to f(xi,xj) an additional random amount of damage
w(xi,xi) with distribution F(xi,xj,-). If the wear starts at level y0

and X jumps at times 0=to<tl<....<tk<t then

t k-1
Yt=y0+ g(xs)ds+ 2 f(xt.,xt.
R i i+l
0 i=0

k-1 k
L ufx 1% D DERT L TR
L i i+ . i i+1 i
i=0 i=0

To model wear we must also model failure which involves killing the wear
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process. Here we restrict ourselves to killing by a continuously distributed
random threshold with distribution G, let G= 1-G. Thus (Xt’Yt) lives
as long as Yt <y* where y* has distribution G.

A wear model is termed purely continuous if it is of the form i

t
Y =y0 + g(xs)ds.
0

X If an observer can observe the whole process (Xt’Yt) then the optimal

stopping and replacement theory for Markov processes applies. However, we

assume that only the second component is observable. In this case the

Ca e

e

process ceases to be Markov.

The optimal stopping problem for purely continuous models has a complete

T o

solution and the optimal policy is always a control limit policy.

.

The optimal replacement problem, even for purely continuous models, does
K not have an implementable O-optimal policy.

We do show, however, how to find e-optimal replacement policies.

) Details may be found in "Optimal Stopping and Replacement for wear models

incorporating continuous wear', UNCC - Technical Report (1986).

L). OPTIMAL REPLACEMENT WITH NON CONSTANT OPERATING COST.

Let Xt:t>() be a non-decreasing Markov process taking values in

§+= (0, ) be a model for the wear of a device. Let Y be independent of

+
Xt:t2=0 and take values in R . Y 1is to be taken as a random threshold,

o o R W

that is the device fails at
o=inf{t>0:xt>Y}.

Models of this type have been studied by amny including Abdel-Hameed.
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Let f(x)20 be continuous and be the operating cost per unit time when
the device is at wear level x. Let g(x)20 be the cost of replacing the
device at wear level x, 1f replacement occurs before failure. And let
g be the cost of replacement at failure. When the device is in operation,
at each moment of time one can decide based upon the wear level whether to
stop and replace the device by a new one or continue to operate it. If

failure occurs while operating, one must immediately replace the device by

a new one. The decision rules then are stopping times, that is functions

-+
T Q+R @l = sample space
subject to the technical restrictions of

< = :0<s<t).
(t t)EFt c(xSO s<t)

TAB
A=i¥f[{20 f f(xs)ds+g(xt)I(T<o)+c0 I(T>B)]
0

EO[tAB]

The long run average optimal replacement problem is to determine T so

that T a
£y f(xs)ds+g(x;)1(;<0)+cOI(¥>O)
A= L
Eo[f ol.
Tr explair the results it is necessary to introduce some preliminaries.
let
G(x) =P(Y<x) and G(x)=1-G(x).
Let
ri{x) = AG(x) where AG(x) = lim EX[G(Xt)] = G(x) .
—_— t >0
G(x) t
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Define

[EO f(xt)dt + CO]

V= 0
Eo[o]
and
[ﬁx Glx, ) (£ (x,) + g (x,) - V)dt]
(A) V() = 0 X
G(x)
Result 1. It is shown that
_ lim o
A= 00 V7(0)

o . . . s . .
wvhere V (x) 1is a solution of a quasi-variational inequal and is the value
function of the discounted optimal replacement problem. Possible numerical

methods are available for solving for Va(x).

Result 2. 1In the case that

A<V+ pr(x) where p=S:pVO(x)
and
g(0) >0,
it is proved that the optimal policy is
1= inf{t:V(xt) =E(xt)g(xt) + COG(Xt)}
where V(x) is a solution of a quasi-variational inequality. Possible

numerical methods are available for solving for V(x).

Result 3. If A=V then Tzo, that is the do nothing nolicy is optimal.

A<V if and only if {x:g(x) <Vo(x)} is non empty. This latter condition

epatin byt Tt e eSO W




can be checked easily since (A) is compatable given the model. If
{x:g(x)«:Vb(x)}= $, then A=V and the do nothing policy is optimal.
Details of these results are in '"Long Run Average Optimal Replacement

Problem", UNCC Technical Report (1986).

M). CONFERENCE (N STOCHASTIC FAILURE MODELS.

Tn June 1983 we hosted a conference on Stochastic Failure Models. The

proceedings of this conference contains many valuable papers on Reliability

in general and specifically on Failure Models.




Y Papers and Reports

_“r‘;‘

fi&

N [ . » . Y . . -

h¥y Abdel-Hameed, M.S., Life distributions of devices subject to a Levy wear
o process, Mathematics of Operations Research, 9, 606-614, (1984)

and Proschan, Frank, Generating Positively Correlated Random

e

(%;ﬁ Variables from a Sequqnce of Independent Random Variables with Symmetric

i}f Logarithmically Concave Densities, UNCC-Technical Report, August, (1984).

sy,

TN

33? Abdel-Hameed, M.S., Life distribution properties of devices subject to pure
jump damage process, J. Appl. Prob. 21, 816 - 825, (1984).

)

:ﬁk , A Power Transformation Exponential Regression Model for

u%‘ Censored Failure Time Data, UNCC-Technical Report, (1984).

W

ES0

kfﬂ Quinn, Joseph, Conservative and dissipative parts of nonmeasure preserving
weishted composition operators, Houston Journal of Math, 8, 575-586, (1982).

\!g‘f

Q“ o _____» On the stability of optimal stopping times for Markov chains,

:?5' UNCe-Technical Report No. 2 (1981).

‘\::'4

e o . Stability of Optimal Stopping Problems for Markov Processes,
UnGu-Technical Report No. 1 (1982).

. '.'

o , Stability of Optimal Replacement Policies, UNCC-Technical

e w4 —_— -

P o Pepnart (1983).

L)

1“‘

LAY , An Iterative Scheme for Approximating Optimal Replacement

% P

Pnlicies, Reliability Theory and Models, Mptes amd Reports in Computer

;Qﬁﬁ Science and Applied Mathematics, M.S. Abdel~Hameed, E. @inlar and

ﬁ;ﬁ Joseph Quinn. Fditors, Academic Press, Orlando, (1984).

O

H !‘I

:&ﬂ , Optimal Stopping and Replacement for Wear Models Incorporating

! Continuous Wear, under preparation.

:g§ Anderson, R.F., Goldring, T., and Quinn, Joseph, Accelerated Life Testing of

35: Ssvtems whose wear is governed by a controlled ODE, under nreparation.

)

t‘.. [}

ﬁ" Anderson, R.F.. Replacement with Non Constant Operating Cost, under

"y preparation.

’?ﬁw M.S. Abdel-Hameed, E. Ginlar and Joseph Quinn, Editors, Reliability theory and
N Models, Notes and Reports in Computer Science and Applied Mathematics,
Iy Academic Press, Orlando, (1984).

-yw

y“ »- —— ' y.FrL- - » ) \ » ‘-..’ y % ) - Y 3' w' z
SIPE RN RN 3’- it 2 033 U MR TR G TR S M ANty

QNP3 A e > e =
T bt Y




: s
o

- -
PR

.ot
-

R
P

[ -

PRI
A?J"I"iﬁtg.\“él

R > N A
" g :.::::?

¥ e
3
eyt Yk,

sk

)V R

¥4



